minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
↳ QTRS
↳ DependencyPairsProof
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
DIV2(s1(X), s1(Y)) -> IF3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
DIV2(s1(X), s1(Y)) -> MINUS2(X, Y)
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
DIV2(s1(X), s1(Y)) -> GEQ2(X, Y)
GEQ2(s1(X), s1(Y)) -> GEQ2(X, Y)
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
DIV2(s1(X), s1(Y)) -> IF3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
DIV2(s1(X), s1(Y)) -> MINUS2(X, Y)
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
DIV2(s1(X), s1(Y)) -> GEQ2(X, Y)
GEQ2(s1(X), s1(Y)) -> GEQ2(X, Y)
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
GEQ2(s1(X), s1(Y)) -> GEQ2(X, Y)
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GEQ2(s1(X), s1(Y)) -> GEQ2(X, Y)
POL(GEQ2(x1, x2)) = 2·x1 + x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
POL(MINUS2(x1, x2)) = 2·x1 + x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
POL(0) = 0
POL(DIV2(x1, x2)) = x1
POL(minus2(x1, x2)) = 1
POL(s1(x1)) = 2 + x1
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
minus2(0, Y) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
geq2(X, 0) -> true
geq2(0, s1(Y)) -> false
geq2(s1(X), s1(Y)) -> geq2(X, Y)
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> if3(geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
if3(true, X, Y) -> X
if3(false, X, Y) -> Y